EU Scientists Seek Ways to Break HDD Capacity Barrier
At one terabit per square inch
This is a Press Release edited by StorageNewsletter.com on July 12, 2010 at 3:16 pmOur ability to store huge volumes of documents, photos, videos and music on our computers and other gadgets is a result of enormous strides in technology over the years. Scientists from the EU-funded Terabit magnetic storage technologies (TERAMAGSTOR) project are now aiming to push the boundaries even further with a hard disk that has the storage density capacity of one terabit per square inch (1 Tbit/in²).
The project has been funded EUR 3.45 million by the information and communication technologies (ICT) Theme of the EU’s Seventh Framework Programme (FP7).
To develop their concept, the researchers used tiny magnetised nanospheres, which at 25 nanometres in diameter, are larger than traditional grains but smaller than typical storage cells. According to the team, the benefit of using these nanospheres is that they self-assemble into a regular array, which has the potential to keep costs low.
The nanospheres were then blended with an alcohol-based solution that was placed onto the substrate. To make sure the particles were held into place, the scientists then added a magnetic film (an iron-platinum alloy that has attracted considerable industry interest) on top of the surface to form a kind of magnetic ‘cap.’ This cap effectively acts as a magnet (with a north and south pole), and the array can be used as a storage device.
Since spheres that are separated by 25 nanometres are equivalent to storage density of 1 terabit (1,000 gigabits) per square inch, the MAFIN team believes that the same approach with smaller spheres could produce densities that are up to 6 times greater.
Beyond the recording medium itself, the researchers also investigated recording techniques (they discovered that adjustments will need to be made to the iron-platinum so that information can be easily recorded and read) and experimented with using a magnetic-tip probe (as a replacement to the conventional recording head) to magnetise and read each of the nanospheres.
TERAMAGSTOR is the successor of the original Magnetic films on nanospheres: innovative concept for storage media (MAFIN) project, which was funded EUR 1.3 million by the information society technologies (IST) Thematic Area of the EU’s Sixth Framework Programme (FP6).
Unlike today’s hard disks that record information on a ferromagnetic layer made up of grains, the objective of MAFIN was to develop a completely new magnetic recording medium for ultrahigh-density magnetic storage applications.
TERAMAGSTOR has now picked up on the results of the proof-of-concept project to design, fabricate and test future perpendicular magnetic storage media with areal density (the density of a two-dimensional object) larger than 1 Tbit/in².
Chemists, physicists, engineers, and materials scientists from nine European institutes began work on TERAMAGSTOR in 2008, which is headed by Demokritos, the National Centre for Scientific Research in Greece. The team’s approach is based on the development of advanced film media using techniques from nanotechnology, one of the key manufacturing technologies of the twenty-first century.
Under MAFIN, the aim was to build a recording surface comprised of purpose-made magnetic cells, and to produce these nanostructures both inexpensively and on a large scale. The three-year TERAMAGSTOR project will conclude in April 2011.
Comments
The are no more HDD manufacturers in Europe since many years. The Bull, DZU, Gigastorage, Rodime, Robotron and Xyratex are gone. The only and last manufacturing plant involved in disk drives is a Seagate's facility in Springtown, Londonderry, Northern Ireland, producing disk heads on wafers.
So why EU is putting millions of Euros in this technology? There are excellent specialists of fundamental magnetic technology on the continent, but their work could only finish in the hand of the current five HDD manufacturers based in USA or in Asia as it's impossible today to launch a start-up in this field because it involves too much capital and all the patents are owned by the same five companies. Cornice, the last firm trying to enter in this activity, finally abruptly collapsed.
If the Teramagstor's EU scientists finally succeed in their new development, the only possibility will be to sell their patents to one of the Big 5 or eventually to start production a disk platters that reclaim big financial investment and thnat could finally end in the hands of one of the same five firms. That's all.
Remember that GMR, a key technology for HDDs, was invented by a group of European people including French Albert Fert and German Peter Grünberg, but they never got the financial credit they deserved.